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Turbulent Boundary Layers
Based on the theory of similarity analysis and the analogy between momentum and
energy transport equations, the temperature scalings have been derived for forced con-
vection turbulent boundary layers. These scalings are shown to be able to remove the
effects of Reynolds number and the pressure gradient on the temperature profile. Fur-
thermore, using the near-asymptotic method and the scalings from the similarity analysis,
a power law solution is obtained for the temperature profile in the overlap region.
Subsequently, a composite temperature profile is found by further introducing the func-
tions in the wake region and in the near-the-wall region. The proposed composite tem-
perature profile can describe the entire boundary layer from the wall all the way to the
outer edge of the turbulent boundary layer at finite Re number. The experimental data
and direct numerical simulation (DNS) data with zero pressure gradient and adverse
pressure gradient are used to confirm the accuracy of the scalings and the proposed
composite temperature profiles. Comparison with the theoretical profiles by Kader (1981,
“Temperature and Concentration Profiles in Fully Turbulent Boundary Layers,” Int. J.
Heat Mass Transfer, 24, pp. 1541–1544; 1991, “Heat and Mass Transfer in Pressure-
Gradient Boundary Layers,” Int. J. Heat Mass Transfer, 34, pp. 2837–2857) shows that
the current theory yields a higher accuracy. The error in the mean temperature profile is
within 5% when the present theory is compared to the experimental data. Meanwhile, the
Stanton number is calculated using the energy and momentum integral equations and the
newly proposed composite temperature profile. The calculated Stanton number is consis-
tent with previous experimental results and the DNS data, and the error of the present
prediction is less than 5%. In addition, the growth of the thermal boundary layer is
obtained from the theory and the average error is less than 5% for the range of Reynolds
numbers between 5�105 and 5�106 when compared with the empirical correlation for
the experimental data of isothermal boundary layer conditions.
�DOI: 10.1115/1.2813781�

Keywords: turbulent boundary layer, similarity analysis, forced convection heat transfer,
temperature scaling
Introduction

Heat transfer in turbulent boundary layers has attracted many
esearchers due to its various applications in industry such as in
eat exchangers, gas turbine blades, aircrafts, electronic cooling,
nd so on. However, this phenomenon remains unsolved due to
he complexity of nonlinear turbulent quantities. The problem of
orced convection turbulent boundary layer flow is worse in the
ase of pressure gradient flows, particulary in adverse pressure
radient �APG� flow.

Experimental investigations related to forced convection turbu-
ent boundary layers were mainly performed during and before the
970s. Analytical studies and numerical simulations have been the
ain tool to investigate heat transfer problems in boundary layer
ows. Due to high computing cost and limitation of low Reynolds
umber flows, many complex flows in engineering applications
re not well understood by numerical simulations alone, Gad-el-
ak �1�. Therefore, dimensional analysis and similarity analysis
re still useful tools in understanding the basic physics of heat
ransfer in turbulent boundary flows including high Reynolds
umber problems. Using dimensional analysis, Perry et al. �2�
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investigated the velocity and temperature profiles in turbulent
boundary layers subject to the APG. A half-power law was found
for the velocity profile and an inverse-half-power law for the tem-
perature profile in the region of the pressure gradient layer. Fur-
thermore, Afzal �3� derived the same power law using the
matched asymptotic expansion method. These power laws were
limited to describe the temperature profile in a small overlap re-
gion and cannot be used to describe the entire boundary layer.
Kader �4� later proposed the following equations to describe the
temperature profile in the zero pressure gradient �ZPG� turbulent
boundary layers as

TW − T

T�

= Pry
+ exp�− �� + �2.12 ln��1 + y+�

2.5�2 − ȳ�
1 + 4�1 − ȳ�2�

+ ��Pr��exp	−
1

�

 �1�

where y+=yu� /�, ȳ=y /�, �=10−2�Pry
+�4 / �1+5Pr

3y+�, and ��Pr�
= �3.85Pr

1/3−1.3�2+2.12 ln Pr. This equation was derived assum-
ing that a single temperature scaling exists in the overlap region.
A decade later, Kader �5� investigated the temperature profile of
turbulent boundary layer flow subject to pressure gradient using
dimensional analysis and the asymptotic method. The boundary
layer was divided into three regions, and each region was de-
scribed by a given formulation. Moreover, these equations were

derived based on the assumption of a moving-equilibrium bound-
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ry layer, which means that for a given value of the streamwise
ocation x, all the characteristics of the fluid flow depend on the
ocal value of the position of x only. However, recent investigators
rgued that the downstream flow cannot forget its upstream his-
ory, and the upstream conditions, such as the tripping wire �its
hape, size, and location� and the wind tunnel speed will have
ome effects on the development of the downstream flow, Erm
nd Joubert �6�, Castillo and Johansson �7�, and Castillo and
alker �8�.
Instead of using conventional dimensionless analysis or simi-

arity analysis, Churchill et al. �9,10� proposed an algebraic model
o scale the mean turbulence quantities, turbulence Reynolds
tresses, and turbulence heat flux. Le and Papavassiliou �11� used
he theory of Churchill et al. �9,10� to develop a temperature pro-
le for low Re turbulent flow. Moreover, Wei et al. �12,13� devel-
ped the so-called “multiscale analysis” in order to study the
tructure of the turbulent boundary layer with and without heat
ransfer. Different from all the previous studies, George and co-
orkers introduced the near-asymptotic method �14,15�. George

14� used a near-asymptotic method in order to derive the solution
f the velocity profile in the overlap region. By matching the
rofiles in the inner and outer regions at the finite Re number, a
elocity profile can be obtained. This approach is opposite to the
lassical method in which the velocity profiles are obtained in the
imit of infinite Reynolds number. Using the near-asymptotic

ethod, George and Castillo �15� derived a power law solution for
he velocity profile in the overlap region of a ZPG turbulent
oundary layer. They further proposed a composite velocity pro-
le for the same type of flow. George et al. �16� discussed that a
ower law solution should also exist to describe the temperature
rofile in the overlap region of a thermal boundary layer. In the
urrent investigation, the temperature scaling derived by Wang
nd Castillo �17� will be reviewed first. Then using the new tem-
erature scalings proposed by Wang and Castillo �17�, a new
ower law solution will be derived for the temperature profile in
he overlap region by applying the near-asymptotic theory. Fur-
hermore, a composite temperature profile is constructed by intro-
ucing a new wake function for the outer region and a function
escribing the near-wall region. In addition, this composite tem-
erature profile will be verified using the ZPG and APG experi-
ental data of Blackwell �18�, Reynolds �19� and the direct nu-
erical simulation �DNS� data of Kong et al. �20�. Also, the

heoretical profiles of Kader �4,5� will be used for comparison and
erification of the present theory. A unique feature of the proposed
ew composite temperature profile is its validity at the finite Re
umber over the entire thermal boundary layer �i.e., from the near-
he-wall region to the outer region�. In addition, this new compos-
te temperature profile will be applied to the energy integral equa-
ion to calculate the heat transfer law.

Theory

2.1 Temperature Scalings From Similarity Analysis. In the
imit as the Reynolds number goes to the infinity, the boundary
ayer equations become independent of the Reynolds number,
chlichting and Gersten �21�, George and Castillo �15�. Therefore,
ny scaling or function representing the boundary layer solutions
ust also be independent of the Reynolds number in this limit.
onsequently, the inner and outer scalings of turbulent boundary

ayers can also be determined in this limit �i.e., the asymptotic
nvariance principle: AIP proposed by George and Castillo �15��.

ost recently, Wang and Castillo �17� applied this theory to
orced convection turbulent boundary layers with and without ex-
ernal pressure gradient. Two different scalings are derived for the
nner and outer regions, respectively. The temperature profiles can
e written in inner and outer variables and given as

Tw − T
= gsi�yT

+;�T
+� �2�
Tsi
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T − T�

Tso
= gso�ȳT;�T

+� �3�

Substituting Eqs. �2� and �3� into the inner and outer thermal
turbulent boundary layers in the limit as �T

+→�, the new inner
and outer temperature scalings are found to be

Tsi = Pr�St�TW − T�� �4�

Tso =
�T

*

�T
�TW − T�� �5�

The variables yT
+ and ȳT are the inner and outer similarity length

scales, respectively, defined as

yT
+ =

yU�

�
�St �6�

ȳT =
y

�T
�7�

The ratio of inner to outer similarity length scales is denoted by �T
+

and given as

�T
+ =

yT
+

ȳT

=
�TU�

�
�St �8�

The outer temperature scaling Tso includes the term �T
* /�T, which

is the ratio of the thermal displacement thickness �T
* to the thermal

boundary layer thickness �T. The thermal displacement thickness
�T

* is defined as

�T
* =�

0

�
T − T�

Tw − T�

dy �9�

Figures 2 and 3 show the comparison between the classical scal-
ing and the new scaling using the ZPG and APG forced convec-
tion experimental data by Blackwell �18�. The APG experiments
were performed in such a way that a power law relationship be-
tween the free stream velocity U� and the streamwise distance x
exists, i.e., U�
xm, where the power law coefficient m represents
the strength of the pressure gradient. A different value of m means
that the flow is subject to different strengths of the pressure gra-
dient. The ZPG data are also from the experiment by Blackwell
�18�. The Reynolds number based on � varies between 515 and
2805 and the upstream wind tunnel speed is given by Uo
�10 m /s.

In the classical scaling, both the inner and outer temperature
profiles were scaled with T�=qw /	Cpu� where qw is the heat flux
imposed at the wall and u� is the friction velocity. For example,
Fig. 2�a� shows various ZPG and APG experimental data in clas-
sical variables �i.e., T� and U��. Clearly, the profiles do not col-
lapse into a single curve as one may expect in the classical view.
For the experimental data with different strengths of the pressure
gradient, the profiles collapse into a single curve for a given ex-
ternal strength of the pressure gradient; however, the collapsed
profiles show different shapes as the pressure gradient changes. In
contrast, the temperature profiles dimensionalized by the new
scaling Tsi= Pr�Tw−T��St1/2 show an excellent collapse over the
entire boundary layer as presented in Fig. 2�b�. Notice that all the
experimental data with different Reynolds numbers and pressure
gradients collapse into the same curve, especially in the near-the-
wall region. Thus, the new scaling is able to capture the influences
of the local heat transfer and the external pressure gradient. This
fact will be shown later to play a crucial role in determining the
functional forms of the temperature profiles gsi and gso.

Figures 3�a� and 3�b� show the same experimental data plotted
in outer variables. Figure 3�a� shows the temperature profiles nor-
malized by the friction temperature T�, as given by the classical

approach. Notice that for the experimental data with fixed up-
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tream conditions and pressure gradient, the profiles collapse into
ne single curve. However, each of these profiles has different
hapes from each other due to different external pressure gradients
mposed on the flow. On the other hand, Fig. 3�b� shows the same
xperimental data using the new outer scaling Tso=�T

* /�T�TW

T��. Clearly, the new scaling, compared to the classical scaling,
emoves all the effects of pressure gradient and the dependence on
he Reynolds number given by �T

+ in the outer flow. Therefore, all
rofiles collapse into a single curve regardless of these effects.

Consequently, Figs. 2�b� and 3�b� indicate that an asymptotic
emperature profile exists when the profiles are scaled by the new
nner and outer scalings. Nevertheless, there may be a weak de-
endence in the overlap region on the Reynolds number.

2.2 Temperature Profiles in the Overlap Region. Proper
emperature scalings have been reviewed in the previous section;
hese scalings are able to remove most of the effects from the
eynolds number dependence and different strengths of pressure
radients. In this section, an analytical function will be derived to
escribe the entire temperature profile from the near-the-wall re-
ion up to the outer region of the boundary layer.

The inner and outer temperature scalings will be used in order
o determine the functional dependence in the overlap region �i.e.,
he common region between the inner and outer flows given in
ig. 1�. Figure 1 shows the diagram of different layers within the

hermal boundary layer, which corresponds to various regions
ithin the velocity layer discussed by George and Castillo �15�.
ccording to George and Castillo �15�, an overlap region is found

or the velocity boundary layer within the range of 30
y+

0.1�+. For the thermal boundary layer, an overlap region can be
imilarly transformed from the velocity overlap region as 30�

+ + + + �

Fig. 1 Schematic showing various re
yT 
0.1� � considering yT =y �, where �= St / �Cf /2�. The

ournal of Heat Transfer
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overlap region includes two sublayers: one is the convective sub-
layer where the conduction term has almost no effect; the other
one is the thermal mesolayer where the conduction term is not
negligible, and it has certain effects on the turbulent heat flux
term. The temperature scalings and the functions for the inner and
outer flows will be employed together in order to build the com-
posite temperature.

George and Castillo �15� proposed the near-asymptotic method
to investigate the velocity profile in the ZPG boundary layer flow.
This theory will be applied for the temperature profile in the over-
lap region of turbulent boundary layers. According to the near-
asymptotic theory, the following conditions or assumptions should
be satisfied. First, at the finite Re number given by �T

+, the tem-
perature profile scaled in either inner or outer variables can de-
scribe the flow everywhere inside the boundary layer. Therefore,
at finite Reynolds number, the inner temperature profile of Eq. �2�
and the outer temperature profile of Eq. �3� must match each
other, and it follows that

QT��T
+� = PT��T

+�gsi + gso �10�

where

QT��T
+� =

Tw − T�

Tso
PT��T

+� =
Tsi

Tso
�11�

for all values of y and �T
+. Second, the temperature derivatives

with respect to the vertical position y should also be the same
whether the temperature profile is expressed in terms of inner
variables or outer variables at finite Re number. Consequently, for
the fixed Re number given by �T

+, the temperature derivatives must
match each other between the inner and outer regions, and it fol-

ns inside the thermal boundary layer
lows that
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ȳT� �gso

�ȳT
�

�T
+

= − PT��T
+�yT

+� �gsi

�yT
+ �

�T
+

�12�

ince the overlap region cannot be maintained in a certain vertical
osition with the change of the downstream position x due to the
act that the boundary layer continues to grow in this direction, an
ntermediate variable ỹT is introduced. This intermediate variable

Fig. 2 Comparisons of the temperat
classical scaling and present scaling
T can be fixed in the overlap region all the way to the limit of

21701-4 / Vol. 130, FEBRUARY 2008

ded 04 Feb 2008 to 141.210.133.198. Redistribution subject to ASM
Re→�, regardless of what is happening in the physical space
according to George and Castillo �15�. Using this intermediate
variable ỹT, the inner and outer length scales should take the fol-
lowing forms;

yT
+ = ỹT�T

+n
ȳT = ỹT�T

+n−1
�13�

where 0
n
1. In the limit as �T
+→�, ȳT→0 and yT

+→� while

profiles in inner variables using the
ZPG and APG flows
ure
for
yT remains fixed in the overlap region along the boundary layer.
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herefore, the matching condition of Eq. �10� can be transformed
n terms of the intermediate variable ỹT and given by

QT��T
+� = PT��T

+�gsi�ỹT�T
+n

;�T
+� + gso�ỹT�T

+n−1
;�T

+� �14�

here the variables PT and QT have the same definitions as given
y Eq. �11�. Differentiating Eq. �14� with respect to �T

+ for the
˜

Fig. 3 Comparisons of the temperat
classical scaling and present scaling
xed yT yields

ournal of Heat Transfer
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�dQT

d�T
+ �

ỹT

=
dPT

d�T
+ gsi + PT�� �gsi

�yT
+ �

�T
+
nỹT�T

+n+1
+ � �gsi

��T
+�

yT
+
�

+ � �gso

�ȳT
�

�T
+
�n − 1�ỹT�T

+n−2
+ � �gso

��T
+ �

ȳT

�15�

and clearing terms by using Eqs. �10� and �12�–�14�, it follows

profiles in outer variables using the
ZPG and APG flows
ure
for
that
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ȳT� �gso

�ȳT
�

�T
+

= gso�T + 
T + gso	SoT − SiT +
QT

gso
SiT
 �16�

here

�T��T
+� = −

�T
+

PT��T
+�

dPT��T
+�

d�T
+ �17�


T��T
+� = − QT��T

+��T − �T
+dQT��T

+�
d�T

+ �18�

SiT�yT
+,�T

+� =
1

gsi
� �gsi

��T
+�

yT
+

�19�

SoT�ȳT,�T
+� =

1

gso
� �gso

��T
+ �

ȳT

�20�

bserve that the variables SiT and SoT, as defined in Eqs. �19� and
20�, represent how fast the functions gsi and gso change with
espect to �T

+ for a fixed y position, respectively. Both of them will
anish identically in the limit of �T

+→�. Meanwhile, when the
emperature profiles are normalized using the new scalings, as
hown in Figs. 2�b� and 3�d�, the temperature profiles gsi in inner
ariables and gso in outer variables have a very weak dependence
n �T

+ in the overlap region. Therefore, the following relationship
oT=SiT�0 exists in the overlap region and Eq. �16� can be writ-
en as

ȳT� �gso

�ȳT
�

�T
+

� gso�T + 
T �21�

he solution of Eq. �21� is a first order approximation of the outer
rofile, gso. Consequently, in the overlap region, a power law so-
ution is obtained by integrating Eq. �21� as

T − T�

Tso
= gso��ȳT,�T

+��overlap = CoT��T
+��ȳT + āT��T��T

+� + BoT��T
+�

�22�

here BoT��T
+�=−
T /�T. Similarly, a power law solution ex-

ressed in inner variables can be formulated in a similar way and
as the following form:

Tw − T

Tsi
= �gsi�yT

+,�T
+��overlap = CiT��T

+��yT
+ + aT

+��T��T
+� + BiT��T

+�

�23�

here BiT��T
+�=−�T /�T with �T=�T

+ / PT�dQT /d�T
+�, which is also

first-order approximation to the temperature profiles in the over-
ap region. The parameters aT

+ and āT in Eqs. �22� and �23� arise
rom the fact that the results should be independent of the origin
hift according to George and Castillo �15� and Oberlack �22�.
eorge and Castillo �15� used a value of −16 for a+ in the ZPG
elocity profile. Here, aT

+ and āT can be simply transformed from
+ by aT

+=�a+ with �=�St / �Cf /2� and āT=a+�� /�T��1 /�+�. Other
oefficients such as CoT, CiT, �T, BiT, and BoT are the functions of

T
+ only. Matching the outer profile Eq. �22� and the inner profile
q. �23� yields the following constraints given as

ln �T
+ d�T

d ln �T
+ =

d ln�− CoT/CiT�
d ln �T

+ �24�

nd

BoT = �T/�T
*�1 − Pr�StBiT� �25�
he solutions of the constraint given in Eq. �24� are as follows:

21701-6 / Vol. 130, FEBRUARY 2008
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�T = �T� +
�A

�ln �T
+�1+�

�26�

CoT

CiT
=

CoT�

CiT�

exp� �1 + ��A
�ln �T

+�� � �27�

where the coefficients A=2.9 and �=0.46, which use the same
value as the case of the velocity profile discussed by George and
Castillo �15�. The coefficients �T�, CoT�, and CiT� are the
asymptotic values of �T, CoT, and CiT. These asymptotic constants
will be determined from the experimental data of Blackwell �18�
in the later sections.

2.3 Temperature Profiles in the Inner Region. In the region
very close to the wall, the heat conduction term is a first order
term compared to convection terms in the governing equation.
Monin and Yaglom �23� have shown that the Taylor expansion of
the mean temperature profile in the sublayer region has the form
of

TW − T

T�

= Pr�y+ − C4�y+�4 + C5�y+�5 + ¯ � �28�

where T�=qw /	CPu�. In this investigation, this Taylor’s expansion
will be used. A filter function of the exponential form will be
adopted considering the fact that the combination of the near-wall
expansion, Eq. �28�, and the overlap expansion, Eq. �23�, is valid
up to y+�15. George and Castillo �15� used a similar idea to form
the inner velocity profile. An expression, which can describe the
inner temperature profile, is given as

�29�
in which the coefficients C4�1�10−4, C5�3�10−6, and the
damping coefficient d=1�10−7 were obtained from the experi-
mental data in the inner region �0�y+�15�.

2.4 Temperature Profiles in the Outer Region. In order to
ensure that the temperature profile is best represented in the wake
region and that all the boundary conditions are satisfied, a poly-
nomial wake function is proposed. In the present investigation, the
suggested thermal wake function takes the polynomial form of
wT�ȳT�=wmȳT

2 +wnȳT
3, which is similar to the one used by Kader

�5� and Granville �24�. Combining the power law solution in the
overlap region in outer variables and the new wake function, the
outer composite temperature profile is then given as,

�30�

The coefficients wm and wn appearing in the wake function w�ȳT�
depend on �T

+, which is contrary to the assumed constant values
given as wm=6 and wn=−4, by Kader �5� and Granville �24�. In
the present derivation, the coefficients wm and wn are determined
such that they satisfy the boundary layer conditions given as

y = �T�or ȳT = 1� ⇒
dT

dy
= 0

T − T�

TW − T�

= 0 �31�

Thus, using the above boundary conditions, Eqs. �31� and �30�,

the analytical forms of wm and wn are obtained as
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Fig. 4 The composite temperature profile of ZPG flows: Blackwell †18‡
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Fig. 5 The composite temperature profile of ZPG flows: Reynolds †19‡
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Fig. 6 The composite temperature profile of DNS data for ZPG flows: Kong et al. †20‡
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wm = −
�T

*

�T
�3CoT�1 + āT��T + 3BoT − CoT�T�1 + āT��T−1� �32�

wn = −
�T

*

�T
�CoT�T�1 + āT��T−1 − 2CoT�1 + āT��T − 2BoT� �33�

here �T
* /�T is actually an integration of the dimensionalized tem-

erature profile from the inner wall to the boundary layer edge. A
onstant value of �T

+ /�T�1.45 is obtained from the experimental
ata of Blackwell �18�. This constant value will be used for the
ther data as well.

2.5 Composite Temperature Profiles. Using the inner tem-
erature profile, Eq. �29�, and the outer temperature profile, Eq.
30�, it is possible to construct a composite profile that describes
he entire boundary layer at the finite �T

+ number. This composite
emperature profile is composed of the inner profile and the outer
rofile, but the profile in the overlap region, Eq. �22� or �23�, has
o be subtracted once to avoid repeating according to Van Dyke
25�. Hence, the composite temperature profile can be constructed
n terms of the outer variables as

�34�
otice that the inner length scale y+ can be expressed in outer

+ ¯ ¯ +̂

Fig. 7 The new composite temperature p
ariables as y = ��TU� /��yT=yT�T. Thus, using Eqs. �29�–�33�,
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the composite profile, Eq. �34�, can be rewritten in inner variables
as

TW − T

T�

=
TW − T�

T�
�− �wm�y+/�T

+̂�2 + wn�y+/�T
+̂�3� + Pr St

U�

U�

�exp�− dy+6
��y+ − C4y+4

+ C5y+5
�

+ Pr�St�BiT + CiT�y+���T�1 + �TaT
+�y+��−1

+
1

2
�T��T − 1�aT

+2
�y+��−2���1 − exp�− dy+6

��� �35�

In order to use Eq. �35�, the variables listed in Table 1 should be
obtained from the experiments or prescribed.

This profile will be verified with the experimental data and the
DNS data, and will be compared with the theoretical profile of
Kader �5� shown in the Appendix of this paper.

3 Results

3.1 Coefficients of the Composite Temperature Profiles. In
order to describe the experimental data using the composite pro-

le for APG flow: Blackwell †18‡ m=−0.15

Table 1 Variables collected from experimental data

Temperature information TW, T�, T�
Velocity information U�, U�
Property of fluids Pr, �, 	
Boundary layer information �, �T
rofi
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le, Eq. �35�, the correlations of CoT, CiT, and �T need to be
etermined along with the constraints enforced by Eq. �24�. By
ptimizing the experimental data of Blackwell �18�, it was found
hat the outer coefficients BoT and CoT can be approximately de-
cribed as

CoT

CoT�

= 1 − 1.32 exp�− 0.0226�T
+� �36�

BoT

BoT�

= 1 − 0.4 exp�− 0.0049�T
+� �37�

here BoT�=5.05 and CoT�=−4.67 for APG boundary layer flow
nd BoT�=5.9 and CoT�=−5.4 for ZPG boundary layer flow.
hen, using Eqs. �27� and �36�, CiT /CiT� is now given as

CiT

CiT�

= �1 − 1.32 exp�− 0.0226�T
+��exp� �1 + ��A

�ln �T
+�� � �38�

sing the constraint given by Eqs. �25� and �37�, BiT is then given
s

BiT =
1

Pr�St
�1 −

�T
*

�T
BoT��1 − 0.4 exp�− 0.0049�T

+��� �39�

ote that the slight difference of the coefficients between the APG
nd ZPG flows is due to major effects of the pressure gradient on
he outer flow. The asymptotic value of the power coefficient �T�

s found to be a constant of 0.0827, which is same for both ZPG
nd APG flows considered here. Table 2 summarizes the coeffi-
ients for the composite profile, Eq. �35�, for all the experimental

Fig. 8 The new composite temperature
ata by Blackwell �18� with both ZPG and APG.
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3.2 Temperature Profiles. Figure 4 compares Kader’s com-
posite profile given in the appendix with the new composite pro-
file of Eq. �35� for the ZPG experimental data of Blackwell �18�.
The reason why we used the composite profile in the inner vari-
able is that it is convenient to compare the new results with Kad-
er’s results since the composite profile proposed by Kader is given
in inner variables. In Fig. 4, the circle represents the experimental
data, the dash line Kader’s log-law composite profile, and the
solid line the current power law composite profile. Notice that the
new composite profile can describe the experimental data through
the entire boundary layer within an error of less than 5%, while
Kader’s log law with an average error of 8%. Especially, Kader’s
log-law composite profile cannot predict the low Reynolds num-
ber flow well in the outer region as magnified in Fig. 4.

Figure 5 shows the ZPG experimental data of Reynolds �19� for
the new composite profile of Eq. �35� and Kader’s composite pro-
file �details of this function can be found in the Appendix�. Rey-
nolds’s experiment focused exclusively on the convective heat

file for APG flow: Blackwell †18‡ m=−0.2

Table 2 The values of various coefficients in the composite
profile

C4 C5 d � A

1�10−4 3�10−6 1�10−7 0.46 2.9
�T� −

CoT�

CiT�

BoT� CoT�

0.0829 −0.12 5.9�ZPG� −5.4 �ZPG�
5.05�APG� −4.67 �APG�
pro
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Fig. 9 Kader’s composite temperature profile for APG flows: Blackwell †18‡ m=−0.15
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ransfer from a flat plate �i.e., there is no change in the external
ressure�. The upstream velocity is around 30 m /s and the Rey-
olds number based on the momentum thickness is up to 6072. As
hown in Fig. 5, the new composite profile performs better than
ader’s profile in describing the experimental data, especially in

he inner region. It is important to observe that this set of data was
ot used at all in calculating the coefficients shown in Table 2.
herefore, the accuracy of the composite profile �at least for the
PG flow� is actually independent of the data used �i.e., Blackwell
ata�. Moreover, it can also be generalized to describe the data
ith different Reynolds numbers.
Furthermore, Fig. 6 shows another independent verification of

he proposed temperature profile using the DNS data by Kong et
l. �20� for Re�=407 and Re�=430. Figure 6�a� shows the com-
arisons of the ZPG flow data on an isothermal condition and the
roposed composite profile. The new composite profile can pre-
ict this DNS temperature profile very well with an average error
f less than 2%. Particularly, the proposed composite profile can
redict the inner region and overlap region very well. In the wake
egion, the maximum error between the theory and the DNS data
s 8.3%. Similarly, Fig. 6�b� shows the comparison between the
roposed temperature profile and the DNS data with a constant
eat flux condition. The average error between these two profiles
s less than 5%. However, in the near-the-wall region, the maxi-

um error between the theory and the DNS data is up to 18%,
hich is mainly due to the fact that at such low Reynolds number,

he boundary layer does not have an overlap region and is mainly
omposed of mesolayer.

Figures 7 and 8 show the results using the new composite pro-
le Eq. �35� for APG flows subject to different strengths of the
ressure gradients with m=−0.15 and m=−0.2, respectively. As
hown in these figures, a single new composite profile can de-
cribe the entire boundary layer very well, and the average error is
ess than 5%. Also, a single value of each coefficient listed in
able 2 works for both APG and ZPG flows but with different
eynolds numbers.
Figure 9 shows some examples of the same experimental data

ut using Kader’s temperature profiles �5�. The circle represents

Fig. 10 Reynolds number based on th
sus Reynolds number based on the x
he experimental data, the solid line Kader’s law of the wall �i.e.,
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Eq. �1� in the Appendix�, the dash line Kader’s inverse half-power
law �i.e., Eq. �A2� in the Appendix�, and the dash dot line Kader’s
defect law �i.e., Eq. �A3� in Appendix�. Notice that the exact
region where each of these laws is valid cannot be determined
beforehand. Therefore, each of these profiles is plotted here
through the entire boundary layer. As shown in the semilog plot
on the right side, Kader’s defect law can only describe the outer
part of the boundary layer. Kader’s inverse half-power law shows
a good fit for the data in the “overlap” region. However, Kader’s
log law shows a poor prediction in the near-wall region, which is
very important in predictions of heat transfer on the wall. There-
fore, the new composite profile has the obvious advantages over
Kader’s profiles in describing the entire boundary layer profile,
especially the inner region, which is very crucial to predict the
heat transfer law.

3.3 Heat Transfer Law. The current composite temperature
profile can be applied to derive the heat transfer law. Using the
integral forms of the momentum and energy equations, the Stan-
ton number is solved for turbulent boundary layers over a flat
surface.

The integral forms of momentum and energy equations in inner
variables are given below as

d

d Rex
� 1

�u�U���
0

�+
U

U�
	1 −

U

U�

dy+� = 	 u�

U�

2

�40�

d

d Rex
� qw

�u�U��2�
0

�̂T
+

U

U�
�	Tw − T�

T�

 − 	Tw − T

T�

�dy+� = qw

�41�

First, the momentum equation �40� is solved by considering a
Runge–Kutta procedure and using the velocity composite profile,
UU�, as well as an expression for u�U� as a function of �+,
developed by George and Castillo �15�. In this way, the variation

hermal boundary layer thickness ver-
ordinate
e t
of the hydrodynamic boundary layer thickness as a function of the
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treamwise direction x �or Rex=xU� /�� is calculated along the flat
late.

Then, with the hydrodynamic solution ��= f�Rex��, the corre-
ponding velocity profile by George and Castillo �15� and the
emperature profiles developed in the present analysis given by
q. �35�, the energy equation �41� is solved in a similar manner to
etermine the variation of the thermal boundary layer thickness
long the flat plate. Figure 10 shows the variation of the thermal
oundary layer thickness normalized by the friction velocity ver-
us the Reynolds number based on the x coordinate �Rex=xU���
or a boundary layer flow on a flat with an isothermal wall. A

Fig. 11 Stanton number calculated b
the integral energy equation for the is
omparison is performed with an empirical equation obtained
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from different power law curves proposed by White �26�. By us-
ing equations from White’s �26� �i.e., Eqs. �6-112a� and �6-112b�
of book� plus a hydrodynamic/thermal boundary layer thickness
ratio in a flat plate at Pr=0.7, the following expressions are
obtained:

Cf = 0.0592 Rex
−1/5 �42�

�
= 0.37 Rex

−1/5 �43�

e composite temperature profile and
ermal data
y th
x
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�

�T
� Pr1/3 �44�

�T
+̂ = 0.0716939 Rex

0.7 �45�
ccording to Fig. 10, the maximum relative error is approxi-
ately 15% at Rex equal to 2�106. For the range of Reynolds

umbers considered, i.e., from 5�105 to 5�106, the average un-
ertainty is approximately 5%.

In solving both governing equations, it is necessary to start the
arching process along the flat plate from a known point or initial

onditions, i.e., finite values of the velocity and thermal boundary

Fig. 12 Stanton number calculated b
the integral energy equation for the is
ayer thicknesses must be specified at some location. At the lead-
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ing edge of the flat plate, both thicknesses are considered zero. To
avoid the discontinuity of the Stanton number at this point �infin-
ity�, calculations are started from a downstream point.

Finally, the thermal solution �T
+= f�Rex� is substituted into the

heat transfer law given as below

�St =
1

Pr

�T
*

�T
	−

CoT�

CiT�

exp� A

�ln �T
+����T

+−�T� �46�

which is obtained by matching the outer profile, Eq. �22�, and the

e composite temperature profile and
x data
y th
inner profile, Eq. �23�, in the overlap region.
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The roots of the nonlinear equation �46� are solved by the bi-
ection method and represent the Stanton numbers at different
eynolds numbers.
Figures 11 and 12 show a comparison of the Stanton number

redictions on air as a function of the Reynolds number based on
he x coordinate with an empirical power law, numerical results,
nd experimental data. All data are grouped according to different
all conditions �isothermal and isoflux� and Reynolds numbers

low and high�.
Figure 11�a� shows the results of Stanton numbers obtained at

ow Reynolds numbers �80,000
Rex
500,000� for an isother-
al wall. A comparison is made with the empirical power law for

ow Rex from Kays and Crawford �27�, the DNS results from Bell
nd Ferziger �28� and Kong et al. �20�, and experimental data
rom Reynolds �19� and Moffat and Kays �29�. The maximum
eviation of the present predictions from the power law is around
.3% at Rex
250,000. However, the present predictions depict a
etter agreement with DNS results as well as with experimental
ata than the power law. Similarly, for the isoflux wall condition
t low Rex, as shown in Fig. 11�b�, it is observed that there is a
ood agreement with DNS data from Kong et al. �20�. On the
ther hand, as the Rex increases, the power law is a little bit closer
o the experimental data from Reynolds �19� and Sucec’s predic-
ions �30� �who used the combined law of the wall and the wake
unction of Coles for solving the integral forms of the momentum
nd energy equations� than our predictions.

Figure 12�a� depicts the results for the isothermal boundary
ondition at high Rex. The present predictions show a good agree-
ent with the power law curve from Kays and Crawford �27� �i.e.,
qs. �12�–�14� of the book, which are valid for the range
00,000
Rex
5,000,000�. At higher Reynolds numbers, a
light increasing separation of the present calculations with re-
pect to the empirical profile is observed; however, a similar trend
s seen in Sucec’s predictions �30�. However, the present simula-
ions show a better agreement in this zone of high Reynolds num-
ers with experimental data from Taylor et al. �31� than those of
ucec �30�. Experimental data from Reynolds �19� exhibit a sig-
ificant level of dispersion, which is probably due to the different
pstream conditions considered. In a similar way, Figure 12�b�
hows the variation of the Stanton number at high Rex but at an
soflux wall condition. An almost perfect agreement between the
resent predictions and the empirical power law from Kays and
rawford �27� �i.e., Eqs. �12�–�27�, which are valid for the range
00,000
Rex
5,000,000� is appreciated. When comparing
ith experimental data from Taylor et al. �31�, some disagreement

s obtained at lower Reynolds numbers �in the range 500,000
Rex
1,500,000�. A better match with experimental data from

aylor et al. �31� is observed at higher Reynolds numbers, not
nly for our numerical predictions but also for the Sucec’s calcu-
ations. As in the isothermal case, Reynolds’ experiments �19�
how some dispersion, which can be reached a maximum devia-
ion of 6% with respect to the power law. Therefore, an accurate
omparison becomes difficult. In general, present predictions and
eynolds’ experiments �19� show a similar trend, especially in the

ange of Rex=1,800,000–3,000,000.

Conclusions
Two temperature scalings, proposed by Wang and Castillo �17�,

ere reviewed and applied for the forced convection turbulent
oundary layer by using the theory of similarity analysis and the
nalogy between the momentum and energy transport equations.
he new temperature scalings were shown to be able to collapse

he temperature profile better than the single temperature scaling
roposed in the classical theory. Particulary, these scalings were
ble to remove the effects of Reynolds number dependence and
ressure gradient on both inner and outer flows. Using the near-
symptotic theory and the new temperature scalings, a new power
aw solution has been obtained for the temperature profile in the

verlap region by matching the inner and outer temperature pro-
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files. Moreover, a function describing the inner region was pro-
posed similar to the inner velocity profile proposed by George and
Castillo �15�, and a new wake function was proposed, which sat-
isfies the boundary conditions in the outer region of the boundary
layer. Furthermore, a composite temperature profile was formed,
which is able to describe the flow over the entire boundary layer at
finite Reynolds number.

This new composite temperature profile was verified by using
the experimental data, the DNS data, and the theoretical profile by
Kader �4,5�. It was shown that the present temperature profile
shows a better prediction with an average error of less than 5%
than Kader’s prediction for the the same experimental data. The
new composite temperature profile was also independently veri-
fied using the DNS data and the experimental data from Reynolds
�19�, which were not used in determining the coefficients in the
temperature profile. As a result, the new composite profile shows
a very good agreement with experimental and DNS data with an
average error of less than 5%.

Furthermore, the new temperature composite profile was com-
bined with the integral momentum and energy equation to calcu-
late the Stanton number and the boundary layer growth along the
streamwise direction. Various DNS data and experimental data
under isothermal or isoflux boundary conditions have been used to
test the newly calculated Stanton number, respectively. It was
shown that the Stanton number in the power law form can predict
the experimental data or the DNS data with an average error of
5%.
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Nomenclature
Cf /2 � skin friction coefficient

gso ,gsi � outer and inner temperature functions
Pr � Prandtl number, Pr=� /�
Pe � Peclet number, Pe=U�� /�

Re� � Reynolds number, Re�=U�� /�
Re� � Reynolds number based on momentum thick-

ness, Re=U�� /�
Rex � Reynolds number based on streamwise direc-

tion x, U�x /�
Re�T � Reynolds number based on thermal boundary

layer thickness �T, U��T /�
St � Stanton number, St=qw /	CpU��TW−T��

Tso ,Tsi � outer and inner temperature scaling
T� � friction temperature, T�=qw /	Cpu�

T� � free stream temperature
Tw � wall temperature
U� � free stream velocity
u� � friction velocity, u�=��w /	
ȳ � outer velocity similarity length scale, y /�

ȳT � outer temperature similarity length scale, y /�T
y+ � inner velocity similarity length scale, yU� /�
yT

+ � inner temperature similarity length scale,
yU� /��St

Greek Symbols
� � thermal diffusivity, �=k /	Cp
� � momentum boundary layer thickness, i.e., �99

�T � thermal boundary layer thickness
�T

* � thermal displacement thickness,
�T

*=�0
�T−T� /TW−T�dy

�T
+ � ratio of outer to inner temperature length

�
scales, i.e., �TU� /� St
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�T
+̂ � ratio of classical outer to inner temperature

length scales, i.e., �TU� /�
� � kinematic viscosity, � /rho

ubscripts
si � inner thermal boundary layer
so � outer thermal boundary layer
W � at the wall
� � free stream

ppendix
Kader �5� proposed the temperature profile for the turbulent

oundary layer with pressure gradient. He divided the pressure
radient flow in three regions, and each region is characterized by
he following equations:

• the inner region: 0�y+�y1u* /� �the thermal law of the
wall�,

TW − T

T�

= Pr y+

�exp�− G� + ���Pr� + 2.12 ln�1 + y+��exp�− 1/G�
�A1�

• the pressure gradient region: y1� /u*
2 ���y2� /u*

2 �the
inverse-half-power law�

TW − T

T�

= − K1
���/�� + K2

��� �A2�

• the outer region: y2 /H���1 �the temperature defect law�

TW − T

T�

=
TW − To

T�

−
3�Z

1 + Z
	 1

�
− 1
 +

2.12

1 + Z
ln �

−
15 − 3.5�Z

20 + Z
�2 − 6�2 + 4�3� �A3�

here the coefficients G, ��Pr�, K1
���, K2

���, the length scales �, �,
, and the pressure parameter �=1 /	�dP /dx� can be found in
ader �5�. The vertical position y1 is the ordinate of the intersec-

ion point for the law of the wall, Eq. �A1�, and the inverse half-
ower law, Eq. �A2�. The position y2 represents the intersection
oint of the inverse half-power law and the temperature defect
aw, Eq. �A3�. However, y1 and y2 cannot be determined unless
he experimental data are plotted for all three regions. This is a

ajor disadvantage of Kader’s profile since these points �y1 or y2�
ay depend on the Pe number. It is worthwhile mentioning that
ader’s work includes the effects of different Pr numbers.
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